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Scientific Computing meets Machine Learning

Accelerating scientific applications with

machine learning (”AI for Science”)

Scientific computing community

- Sees opportunity for improvement

Machine learning community

- Building on prior success, wants to expand

However, neural network based physics emulators suffer from a lack of extrapolation

capabilities. We explore physics-based regularization to address this challenge.

Improving Extrapolation Capabilities via Regularization:
Developing a Strategy Based on a Two-Dimensional Function

Model

f (x, y) = x2 + y2

using a neural network over the domain [−2, 2] × [−2, 2].

(a) Function to model over the domain

[−2, 2] × [−2, 2]
(b) Interpolation region is the square from

[−1, 1] × [−1, 1] (shown in blue). Extrapolation

region is the rest of the domain (shown in

hatched lines)

Main goal: Improve the accuracy of a neural network in the extrapolation region

while only using labeled data in the interpolation region

Paraboloid: Baseline Model

Loss Function is justMSE on labeled points in the interpolation region [−1, 1]×[−1, 1]

L = 1
N

N∑
i=1

∣∣∣f (x{i}
)

− f̂
(
x{i}

)∣∣∣2

(a) Target Function (b) Model Prediction (c) Absolute Error

Paraboloid: Physics-Informed Regularizers

Seek to regularize the neural network based on information embedded into the

function we are trying to predict, but without using additional data. For example,
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All third derivatives are zero
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Using E3, the loss function can now become
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(a) Target Function (b) Baseline Model. Ext. Error:

8.46 × 10−1
(c) Third Order Regularizer. Ext.

Error: 1.90 × 10−2

Improving Extrapolation Capabilities via Regularization:
Two-Dimensional AcousticWave Equation
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Main Goal: Improve accuracy of neural network in extrapolation region (t > 1) while
only using labeled data in the interpolation region (t ≤ 1)

Reflecting boundary conditions (vn = 0)
Labeled data: data sampled in space every 10th time step for t ≤ 1. Spatial
samples based on on random selection of 1% of discretization points

10% of boundary points are also selected, where a boundary-condition

regularizer can be applied

(a) Simulation (t = 0.0) (b) Simulation (t = 0.4) (c) Simulation (t = 1.0) (d) Data collection at

t = 0.25

Augment the loss function with physics-based regularization that does not require

labeled data

L = MSE + λrEr + λbEb

where Er is a PDE-based regularizer that does not require labeled data and Eb is a

boundary condition regularizer that does not require labeled data.

Two Dimensional AcousticWave Results

Name Er Eb Interp Error Extrap Error

Baseline N/A N/A 1.8 × 10−3 (43%) 1.8 × 10−1 (16%)
PINN 1st |p̂t − ∇ · v̂| + ‖v̂t + ∇p̂‖ ‖v̂n‖ 7.3 × 10−3 (9%) 3.1 × 10−2 (35%)
PINN 2nd |p̂tt − ∇2p̂| N/A 1.8 × 10−2 (7%) 1.9 × 10−1 (25%)

Table 1. Performance of various physics-based regularization strategies (average of five runs with

standard deviation shown in parentheses)

Figure 6. Comparison of extrapolation performance between simulation (left column) and

predictions from neural networks trained with different regularization strategies

FutureWork

Develop an a posteriori error estimate and devise more efficient sampling strategies

based on a measure of neuron saturation.

Figure 7. Difference in layer-wise saturation between a PINN with a 2nd order regularizer and a

baseline NN for the paraboloid target function. Negative (pink) values indicate the PINN is less

saturated in the region while positive (green) values indicate the PINN is more saturated in that

region compared to the baseline NN.
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